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Detailed ferromagnetic resonance study of amorphous
Fe-rich Fe90−xCoxZr 10 alloys. II: critical behaviour and
uniaxial anisotropy

V Siruguri† and S N Kaul‡
School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046, India

Received 4 January 1996

Abstract. Contrary to the earlier reports, a detailed ferromagnetic resonance (FMR) study of
amorphous Fe90−xCoxZr10 alloys with 06 x 6 10 in the critical region shows that the critical
exponentsβ andγ for spontaneous magnetization and initial susceptibility, which characterize
the ferromagnetic (FM)–paramagnetic (PM) phase transition at the Curie temperatureTC , possess
values that areindependentof composition and close to those predicted for a three-dimensional
isotropic nearest-neighbour Heisenberg ferromagnet. The fractionc of spins that participates in
the FM–PM phase transition has a value of 11% for the alloy withx = 0 and increases with
increasing Co concentrationx asc(x)−c(0) ' ax2. In the critical region, the Landau–Lifshitz–
Gilbert relaxation mechanism dominantly contributes to the ‘peak-to-peak’ FMR linewidth1Hpp

and hence1Hpp(T ) ∝ [MS(T )]−1, whereMS is the saturation magnetization. Consistent with
the results obtained in a wide temperature range, which embraces the critical region, the Landé
splitting factorg has a temperature- and composition-independent value of 2.07±0.02 while the
Gilbert damping parameterλ, although temperature independent, decreases with increasing Co
concentration. The angular dependence of the resonance fieldHres observed in both ‘in-plane’
and ‘out-of-plane’ sample geometries has been fitted to theoretical expressions that take into
account the uniaxial anisotropy. The uniaxial anisotropy fieldHk = 2Ku/MS increases with
increasing Co concentration and scales withMS . That the uniaxial anisotropy has its origin in
the pseudo-dipolar atomic pair ordering is vindicated by the finding thatKu ∝ M2

S .

1. Introduction

During the past decade, a number of experimental techniques such as bulk magnetization
[1–5], AC susceptibility [6, 7], electrical resistivity [8, 9], small-angle neutron scattering
[10, 11] and ferromagnetic resonance (FMR) [12–14] have been used to investigate the
critical behaviour of amorphous (a-)Fe-rich Fe100−xZrx (8 6 x 6 11) alloys near the
ferromagnetic (FM)–paramagnetic (PM) phase transition. However, different techniques
have yielded widely different [5, 6] (differing by as much as 50%) values for the critical
exponents that characterize the FM–PM phase transition at the Curie pointTC . A wide
disparity of the same type also exists between the results of bulk magnetization [3] and
FMR [13] measurements on a-Fe90−xCoxZr10 alloys. Subsequent attempts [4, 5, 7] to get at
the root of this discrepancy, particularly in the case of a-Fe100−xZrx alloys, revealed that
the results of different measurements conform well with one another when the serious flaws
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[5, 9] (basically responsible for the abnormally large [2, 3, 8] exponent values) in the previous
data analysis [2, 3, 8] are eliminated in the re-analysis [5, 9]. This observation strongly
suggests that a careful analysis of accurate data taken in the critical region might resolve the
controversy surrounding the nature of FM–PM phase transition in a-Fe90−xCoxZr10 alloys as
well. With this understanding, a detailed FMR investigation of the FM–PM phase transition
in these glassy alloys was undertaken. We have previously used the FMR technique to
determine critical exponents for some of the compositions [13] in the above-mentioned alloy
series. The present study, however, goes far beyond the previous study in that the FMR
spectra are taken at much closer temperature intervals in the critical region, measurements
have been performed over an extended Co concentration range and the Curie temperature
for each composition is approached more closely than in the earlier experiments [13] by
achieving better temperature control and substantial reduction in the temperature gradient
along the sample length. As a result of these improvements, more accurate estimates of the
critical exponents and amplitudes are obtained.

With a view to gaining more physical insight into the nature of magnetic ordering in
a-Fe90−xCoxZr10 alloys, magnetic anisotropy in this alloy system has been investigated in
detail by measuring the temperature and angular dependences of the (FM) resonance field.
This study reveals that the anisotropy is of the uniaxial type and the uniaxial anisotropy
field Hk scaleswith the saturation magnetizationMS over a wide temperature range for all
the compositions investigated in the above alloy series. Values ofMS andHk at T = 0.6TC

for different compositions deduced from the lineshape analysis of the FMR spectra taken
at this temperature conform well with those extracted from the angular dependence of the
resonance field. The physical implications of these results are discussed in detail in section 3.

2. Experimental details

As the details concerning sample preparation, characterization and the measurement
procedure have already been given in the preceding paper [15] (henceforth referred to
as I), they are not repeated here. FMR measurements at a fixed microwave frequency of
9.23 GHz were performed using sample configurations the same as those mentioned in I,
i.e. the horizontal-parallel (‖h) and vertical-parallel (‖v) configurations. The microwave
power absorption derivative (PAD) dP/dH as a function of external static magnetic field
for a given sample configuration was measured at 0.3 K intervals in the critical region,
i.e. in the temperature range−0.1 . ε = (T − TC)/TC . 0.1. At every temperature
setting, the sample temperature was maintained constant to within±30 mK by means
of a proportional, integral and differential temperature controller. The Curie temperature
TC could be approached more closely (i.e. the deviation of the closest temperature fromTC

divided byTC could be reduced by an order of magnitude) in the present experiments because
of improved temperature control and substantial reduction in the temperature gradient along
the sample length brought about by the helium exchange gas in the sample tube. The
sample temperature was measured by a pre-calibrated copper–constantan therocouple in
direct contact with the sample.

The FMR field and linewidth were measured as functions of the angle between the
external static magnetic fieldHex direction and the sample plane or between theHex direction
and easy direction within the sample plane with the aid of a goniometer attachment (mounted
on the microwave cavity) which enabled rotation and orientation of the sample plane at
specific angles with respect to the direction ofHex . Two different sample configurations,
i.e. ‘in-plane’ (IP) and ‘out-of-plane’ (OP) configurations, were used. In the IP configuration,
Hex can have any direction within the sample plane whereas, in the OP geometry,Hex can
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be oriented at any angle in the range 0–180◦ with respect to the sample plane. PAD curves
were recorded at different angles in each of the two sample configurations atT = 0.6TC .

3. Data analysis, results and discussion

3.1. Critical behaviour

The continuous curves in figure 1 depict the observed functional dependence of dP/dH on
H in the‖h configuration at a few selected values of temperature in the critical region. These
curves are also representative of those recorded for a-Fe88Co2Zr10 in the ‖v configuration
and for other compositions in the amorphous alloy series a-Fe90−xCoxZr10 in both‖h and‖v

geometries. In this figure, open circles denote the theoretical variation in dP/dH with H for
the primary resonance yielded by equations (1)–(3) of I for the choice of the Landé splitting
factor g and saturation magnetizationMS , that optimizes agreement with the experimental
variation. Such a detailed lineshape analysis, carried out for each PAD curve separately, not
only permits an accurate determination ofMS(T ) but also reveals that the Landau–Lifshitz–
Gilbert (LLG) equation of motion for magnetization (which forms the basis for equation (2)
of I) adequately describes the resonant behaviour in the critical region and thatg has a fixed
value of 2.07± 0.02 within the temperature and concentration ranges investigated.

Figure 1. PAD curves for a-Fe88Co2Zr10 alloy at a few representative temperature values in the
critical region recorded in the horizontal-parallel sample configuration. Solid curves depict the
observed variation of dP/dH with H whereas the open circles denote the calculated values on
equations (1)–(3) of I.
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3.1.1. Scaling-equation-of-state analysis.Our earlier measurements [16] have demon-
strated that the values ofMS(T ) deduced from the lineshape analysis are in excellent
agreement with those measured on the same sample at an external magnetic field whose
strength is comparable with the resonance fieldHres . In view of this observation,Hres is
identified with the ordering fieldH conjugate toM (≡ MS) and no distinction is made
between theMS(Hres, T ) data (yielded by the lineshape analysis), and theM(H, T ) data.
The magnetic or scaling equation of state (SES) of the form

m = f±(h) (1)

is used to arrive at the correct choice of the critical exponentsβ and γ for spontaneous
magnetization and initial susceptibility and of the Curie temperatureTC , which makes the
M(H, T ) data in the critical region fall on two universal curves,f− for ε < 0 andf+ for
ε > 0, in an m versush plot. In equation (1),m ≡ M/|ε|β and h ≡ H/|ε|β+γ are the
scaled magnetization and scaled field, respectively,ε = (T − TC)/TC , and the plus and
minus signs refer to temperatures above and belowTC . The choice of the parametersβ, γ

andTC for an optimum collapse of the data onto the two universal curves, however, depends
sensitively on the temperature range over which such a data collapse is attempted and is,
therefore, not unique. Hence, a ‘range-of-fit’ SES analysis is used wherein the range of
temperatures in anm versush plot is progressively narrowed down by excluding more and
more of the data taken at temperatures far away fromTC . In the process, the exponentsβ

andγ become increasingly sensitive to the choice ofTC and even a slight deviation in the
exponent values from the correct choice results in a strong departure of the data from the
curvesf−(h) andf+(h). The asymptotic values of the exponents are obtained only when
they become stable against further reduction in the range ofε. Figure 2 serves to illustrate
this fact. The best values of the parametersTC , β andγ for the alloys withx = 0, 1, 2, 4,
6, 8 and 10 in the a-Fe90−xCoxZr10 series obtained in this way are listed in table 1.

3.1.2. Critical exponents and amplitudes.Critical exponents alone do not fully characterize
the critical behaviour near the FM–PM transition but they do so only in association
with the corresponding critical amplitudes. Therefore, a complete understanding of the
critical behaviour atTC is achieved only when the values of critical exponents as well as
critical amplitudes are determined. The values of critical amplitudes, like those of critical
exponents, are extremely sensitive to the choice ofTC and hence a very high accuracy in
the determination ofTC is called for. When a double-logarithmic plot of the type shown
in figure 2 is used to determine the values of the exponents andTC , the values so obtained
may not be accurate enough since small deviations in the data from the universalf−(h)

andf+(h) curves tend to be covered up due to the insensitive nature of the log–log scale.
A more rigorous method of analysis that gets rid of these ambiguities and determines more
accurately the values of the critical exponents, critical amplitudes andTC is based on the
SES form

m2 = ∓a± + b±(h/m) (2)

where the plus and minus signs as well ash andm have the same meaning as in equation (1).
In an m2 versush/m plot, slight deviations that escape detection in a lnm versus lnh plot
can be discerned with ease. In view of the definitions

MS(ε) = lim
H→0

[M(H, ε)] = m0(−ε)β ε < 0 (3)
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Figure 2. ln(M/|ε|β) versus ln(H/|ε|β+γ ) plots for a-Fe88Co2Zr10 alloy for the two different
temperature ranges in the critical region, whereε = (T − TC)/TC .

and

χ−1
0 (ε) =

[∣∣∣∣∂M(H, ε)

∂H

∣∣∣∣
H=0

]−1

=
(

h0

m0

)
εγ ε > 0 (4)

the coefficients in equation (2) can be related to the critical amplitudesm0 andh0/m0 as

a
1/2
− = m0 (5a)

and

a+/b+ = h0/m0. (5b)

The intercepts of the universal curves with them2 and h/m axes in anm2 versush/m

plot, therefore, give the critical amplitudesm2
0 and h0/m0, respectively (figure 3). Such

m2 versush/m plots for a-Fe90−xCoxZr10 alloys that use the values ofTC and critical
exponents obtained from the ‘range-of-fit’ analysis (table 1) are depicted in figure 4. The
values of the critical amplitudes deduced from them2 versush/m plots (figure 4) by the
method illustrated in figure 3 are also displayed in table 1. It is observed from figure 4
that the experimental data fall on the universal curves without any appreciable deviations
even at low fields and this implies that the values of the critical exponents andTC are
reasonably accurate. Also listed in table 1 are the ratiosm0/MS(0) andµ0h0/kBTC (where
µ0 andMS(0) are the magnetic moment per alloy atom and saturation magnetization at 0 K,
respectively; the values ofMS(0), and hence ofµ0, are obtained from the spin-wave analysis
described in I) which, together with the exponent values, are compared with the theoretical
estimates [17, 18] predicted for an isotropic three-dimensional (3D) nearest-neighbour (NN)
Heisenberg ferromagnet.
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Figure 3. A subset of the data presented in figure 4 for a-Fe88Co2Zr10 in the region of small
m2- andh/m-values replotted on a sensitive scale with a view to demonstrating the values of
the interceptsm2

0 andh0/m0 on m2 andh/m axes clearly.

Figure 4. m2 versush/m plots for a-Fe90−xCoxZr10 alloys constructed using theMS data
deduced from the FMR spectra recorded at different temperatures in the critical region.

From the comparison between theory and experiment (table 1), it is evident that, while
the experimental values of the exponents and the ratiom0/MS(0) are in close agreement
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with the theoretically predicted values, the observed value of the ratioµ0h0/kBTC is
smaller than the theoretical value by an order of magnitude for all the alloy compositions.
If h0 is presumed to be an effective exchange interaction field andµeff is the average
effective elementary moment involved in the FM–PM transition, their productµeff h0, i.e.
the effective exchange energy, is expected to equal the thermal energy atT = TC , i.e.
kBTC . From table 1, it is obvious that, unlessµeff is taken to be much larger thanµ0, this
equality cannot hold. Hence, in order that the ratioµeff h0/kBTC equals the 3D Heisenberg
value of 1.58,µeff assumes the values listed in table 1. Moreover, the concentration of
such effective moments isc = µ0/µeff . The values ofc, so computed and shown in
table 1, indicate that only a small fraction of moments participates in the FM–PM phase
transition. According to an earlier finding [3], the critical exponents assume smaller values
with increasing Co concentration in the a-Fe90−xCoxZr10 alloy series but they are still far
greater than the 3D Heisenberg estimates. In contradiction to this result, the exponentsβ

andγ do not dependon the alloy composition and possess 3D Heisenberg-like values. This
implies that the transition atTC is well defined and quenched disorder does not alter the
critical behaviour of the pure spin system with specific heat critical exponentαp < 0, an
inference in accordance with the well known Harris criterion. The Curie temperatureTC

exhibits roughly a linear increase with increasing Co concentration, as previously reported
[19] for a-Fe90−xCoxZr10 alloys, presumably because the partial replacement of Fe with Co
brings into play the strongly FM Fe–Co and Co–Co exchange interactions at the expense of
competingFe–Fe interactions. The concentration dependences of the quantitiesµ0, c and
TC are depicted in figure 5. A glance at figure 5 reveals that the fractionc of the spins
that actually participates in the FM–PM phase transition is small (about 11%) for the parent
alloy a-Fe90Zr10 but increases with increasing Co concentrationx as c(x) − c(0) ' ax2,
with c(0) = 11± 1% anda ' 0.25, in the composition range investigated.

3.1.3. Ferromagnetic resonance linewidth.Temperature dependence of the ‘peak-to-peak’
FMR linewidth1Hpp(T ) in the critical region (|ε| . 0.06) for the glassy alloys in question
observed in the‖h sample configuration is shown in figure 6. An important finding that
deserves attention is that1Hpp has the same values (within the uncertainty limits, typically
±10%) at any specified temperature in the critical region for both‖h and ‖v sample
configurations for a given composition in the a-Fe90−xCoxZr10 alloy series. It turns out
that the functional dependence of1Hpp(T ) on temperature in the critical region for all
compositions can very well be described by the empirical relation

1Hpp(T ) = A + B[MS(T )]−1 (6)

as is evident from thelinear 1Hpp(T ) versus [MS(T )]−1 plots shown in figure 7. In view
of equation (6) of I, the first and second terms in the above expression can be identified with
thefrequency-independentcontribution1H0(T ) andfrequency-dependentLLG contribution
1HLLG(ν, T ) (= 1.45λω/γ 2MS(T )) to 1Hpp(T ). Recognizing the fact thatMS assumes
small values in the critical region,1H0(T ) approaches a constant valueA as T → TC

while the LLG damping mechanism gives a dominant contribution to1Hpp(T ) in the
critical region by virtue of its [MS(T )]−1 dependence. The Gilbert damping parameterλ

for different compositions is calculated from the values of the coefficientB determined
from the least-squares fits to the1Hpp(T ) data based on equation (6). Thetemperature-
independentvalues ofλ, so computed and plotted against Co concentration in figure 5,
range between 2× 108 and 3.5 × 108 s−1. In conformity with the earlier observation (I)
that the parameterλ for a given composition does not depend on temperature, these values
of λ (figure 5) are fairly close to those (figure 6 of I) deduced from the least-squares fits
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Figure 5. Functional dependences of the magnetic momentµ0 per alloy atom at 0 K, the
fraction c of spins participating in the FM–PM phase transition, the Curie temperatureTC and
the Gilbert damping parameterλ on Co concentrationx for a-Fe90−xCoxZr10 alloys. The dashed
curves through the data points serve as a guide to the eye.

to the1Hpp(T ) data over a wide temperature range based on equations (6) and (7) of I. A
substantial decrease in the value ofλ with increasing Co concentration in a-Fe90−xCoxZr10

alloys and its temperature-independent nature can be explained in the same way as in I and
hence we need not elaborate that in this paper.

3.2. Uniaxial anisotropy field

3.2.1. Temperature dependence.The variation in the IP uniaxial anisotropy fieldHk with
temperature for different compositions in the a-Fe90−xCoxZr10 alloy series, depicted in

figure 8, is deduced from the observedH
‖h

res(T ) andH
‖v

res(T ) (figure 2 of I) data using the
relation (equation (3) of I)

Hk(T ) = [H ‖v

res(T ) − H ‖h

res(T )]/2. (7)

A striking resemblance between the functional dependences ofHk and saturation
magnetizationMS on temperature (cf figure 8 of this paper and figure 8 of I) strongly
suggests a relation of the type

Hk(T ) = αMS(T ) (8)

betweenHk and MS . Linear Hk versusMS plots for the investigated compositions in the
a-Fe90−xCoxZr10 alloy series displayed in figure 9 demonstrate that such a relation between
Hk and MS indeed holds in the present case over a wide temperature range. In order to
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Figure 6. Temperature dependence of the ‘peak-to-peak’ FMR linewidth1Hpp(T ) in the critical
region (|ε| . 0.06) for a-Fe90−xCoxZr10 alloys in the horizontal-parallel configuration. Note
that the ordinate scales on the left are forx = 0, 2, 6 and 10 whereas those on the right are for
x = 1, 4 and 8; the longer horizontal bars mark the starting points on these scales.

demonstrate the composition dependence ofHk clearly, we compare the values ofHk for
different compositions at fixed reduced temperaturesT/TC in figure 10.Hk increases with
increasing Co concentration at a rate which is steep forx . 2 but progressively slows down
as x is increased beyondx = 4. The overall functional dependence ofHk on x remains
almost unaffected by changes in temperature. With the aid of the relationHk = 2Ku/MS

betweenHk and the uniaxial anisotropy constantKu, equation (8) can be rewritten in the
form

Ku(T ) = (α/2)[MS(T )]2. (9)

For a given composition in the glassy alloy series in question, values ofKu at different
temperatures can be computed from equation (9) when the correspondingMS(T )-values and
the value of the slopeα of theHk versusMS straight-line plot (figure 9), determined by the
least-squares fit method, are inserted in equation (9). The compositional dependence ofKu

at T = 0.6TC , so obtained, is depicted in figure 11. The currently determined values ofKu

aretypical [16, 20–26] of amorphous 3d transition-metal (TM)-4d TM and 3d TM–metalloid
alloys containing 80–90 at.% 3d TM, which exhibit long-range ferromagnetism.
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Figure 7. 1Hpp plotted against inverse saturation magnetization in the temperature interval
−0.05 . ε . 0.05 for a-Fe90−xCoxZr10 alloys. The straight lines through the data points
represent the least-squares fits to the data based on equation (6) of the text. Note that the
ordinate scales on the left are forx = 0, 2, 6 and 10 whereas those on the right are forx = 1,
4 and 8; the longer horizontal bars mark the starting points on these scales.

3.2.2. Composition dependence.With a view to testing the validity of the assumption
Hk � 4πMS (on which equation (7) rests) and hence to ascertaining whether or not
equation (7) determinesHk accurately, we have extracted values ofHk for different
compositions atT = 0.6TC from the angular dependence of the resonance field using
the method mentioned below. The rationale behind the choice of this temperature is that
the angular dependence of the primary resonance can be studied without any interference
[15] from the secondary resonance, which makes its presence felt atT ' TC . Figure 12
shows the PAD curves plotted against the external fieldH for a few specified angles that
H makes with the easy axis in the IP and OP configurations atT = 0.6TC for the primary
resonance in a-Fe88Co2Zr10 alloy. The angular variation in the PAD curves displayed in
figure 12 is alsocharacteristicof other compositions in the glassy alloy series investigated.
The angular dependence ofHres and1Hpp for the two geometries, deduced for the dP/dH

versusH curves (figure 12), is depicted in figures 13 and 14, respectively. It is evident from
figure 13 that the change inHres in the IP case as the angleψ is swept through 90◦ is of the
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Figure 8. Variation in the IP uniaxial anisotropy fieldHk with temperature for a-Fe90−xCoxZr10

alloys.

order of a few hundred oersteds whileHres changes by more than an order of magnitude
from its value atα = 0◦ whenα → 90◦ in the OP case. Similar variation with the angles
ψ and α is also observed for1Hpp (figure 14). Absence ofHres(α) and 1Hpp(α) data
points for angles in the vicinity of 90◦ in figures 13(b) and 14(b) should not be interpreted
as a signature of divergence but instead, for anglesα ' 90◦, both Hres and1Hpp exceed
the highest magnetic field (about 11 kOe) generated by the electromagnet coupled to the
spectrometer. In figure 13, the continuous curves denote the variation inHres with the angle
ψ or α yielded by the theoretical calculations whose gist is given below.

With the choice of the coordinate system as shown in figure 15, the free-energy density
for a thin film with an IP uniaxial anisotropy fieldHk = 2Ku/MS directed along thex axis
(easy axis) is given by

E = −MSH(sinθM sinθH cos(φH − φM) + cosθM cosθH ) + 2πM2
S cos2 θM

+Ku(1 − sin2 θM cos2 φM) (10)

whereMS is the saturation magnetization,θM , θH and φM , φH are the customary angles
defining the directions of the magnetization vectorMS and the external magnetic field vector
H in spherical polar coordinates (figure 15). In the above expression, the first, second and
third terms are the Zeeman, demagnetizing and uniaxial anisotropy contributions to the
free-energy density, respectively. Following the standard approach [27], the equilibrium
conditions for magnetization at resonance, i.e.

Hres [sinθM cosθH − cosθM sinθH cos(φH − φM)]
= 2πMS sin(2θM) + (Hk/2) sin(2θM) cos2 φM (11)
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Figure 9. Hk(T ) plotted againstMS(T ) in the temperature range 77 K6 T . TC

(77 K 6 T 6 500 K) for a-Fe90−xCoxZr10 alloys with x = 0, 1, 2, 4, 6, 8 and 10 (x = 18).
The straight lines through the data points represent the best least-squares fits to the data based
on equation (18) of the text. Note that the ordinate scales on the left are forx = 0, 2, 6 and 10
whereas those on the right are forx = 1, 4 and 8; the longer horizontal bars mark the beginning
of these scales.

and

Hres sinθH sin(φH − φM) = (Hk/2) sinθM sin(2θM) (12)

and the resonance condition

(ω/γ )2 = [Hres{cosθM cosθH + sinθM sinθH cos(φH − φM)}
−(4πMS + Hk cos2 φM) cos(2θM)]
×[Hres{cosθM cosθH + sinθM sinθH cos(φH − φM)}
−(4πMS + Hk cos2 φM) cos2 θM + Hk cos(2φM)]
−((Hk/2) cosθM sin(2φM))2 (13)

are obtained using the relations [27]

∂E

∂θM

= 0 (14)
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Figure 10. Co concentration dependence ofHk at a few representative values of the reduced
temperatureT/TC .

Figure 11. Variation in the uniaxial anisotropy constantKu with Co concentration atT = 0.6TC

in a-Fe90−xCoxZr10 alloys.

∂E

∂φM

= 0 (15)

and (
ω

γ

)2

= 1

M2
S sin2 θM

[
∂2E

∂θ2
M

∂2E

∂φ2
M

−
(

∂2E

∂θM∂φM

)2
]

(16)

respectively. Note that, in equations (11)–(16),θM and φM denote the equilibrium values
of these angles for a given direction ofH, which is specified by the anglesθH andφH . In
the OP configuration (figure 16(a)), bothH andMS are confined to thex–z plane so that
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Figure 12. Power absorption curves for a few specified angles that the static magnetic fieldH

makes with the easy axis in the IP and OP configurations atT = 0.6TC a-Fe88Co2Zr10 alloy.
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Figure 13. Variations in the resonance fieldHres with the anglesψ andα for the IP and OP
cases, respectively, in a-Fe90−xCoxZr10 alloys atT = 0.06TC . The continuous curves through
the data points for the IP and OP cases are the best least-squares fits to the data based on
equations (20) and (18), respectively, of the text. Note the shift in the origin (long bars) of the
ordinate scale for Co concentrations ranging from 0 to 6.

φM = φH = 0 and the anglesθM andθH are measured with respect to thez axis which lies
in the sample plane (y–z plane) along the easy axis, i.e.θM = π/2− θ andθH = π/2− α.
In this case, equations (11) and (13) take the form

sinα

sinθ
− cosα

cosθ
− 4πMS + Hk

Hres

= 0 (17)

and

(ω/γ )2 = [Hres cos(α − θ) + (4πMS + Hk) cos 2θ ]
×[Hres cos(α − θ) − 4πMS sin2 θ + Hk cos2 θ ]. (18)

By contrast, the vectorsH and MS are confined to the sample plane (y–z plane), i.e.
θM = θH = π/2 in the IP configuration (figure 16(b)) and the anglesφM and φH are
measured with respect to the easy axis (z axis) in the sample plane such thatφM ≡ φ and
φH ≡ ψ. In the IP case, equations (12) and (13) thus reduce to

sinψ
sinφ

− cosψ
cosφ

− Hk

Hres

= 0 (19)

and

(ω/γ )2 = [Hres cos(ψ − φ) + 4πMS + Hk cos2 φ][Hres cos(ψ − φ) + Hk cos(2φ)]. (20)

For a given direction ofHres represented by a certain value of the angleψ (α) in the IP
(OP) case, the equilibrium value of the (magnetization) angleφ (θ ) and the values ofMS
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Figure 14. Functional dependences of the FMR linewidth1Hpp on the anglesψ andα for the
IP and OP cases, respectively, in a-Fe90−xCoxZr10 alloys atT = 0, 6TC . Note the shift in the
origin (long bars) of the ordinate scale for Co concentrations ranging from 0 to 6. The curves
through the data points serve to highlight the angular variation.

Figure 15. The coordinate system for a thin film with an IP uniaxial anisotropy.

andHk for each composition are self-consistently calculated from equations (19) and (20)
(equations (17) and (18)) using the experimentally observed value ofHres(ψ) (Hres(α)).

Values ofθ , so computed, are plotted againstα for all the investigated compositions in
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Figure 16. Coordinate systems showing various angles used in the computation of angular
variation of the resonance field for (a) OP and (b) IP configurations.

the glassy alloy series a-Fe90−xCoxZr10 in figure 17. A similar plot for the IP case, i.e. the
φ versusψ plot, is not shown because these plots are straight lines with slope equal to unity
(i.e. φ ' ψ) for all the values of the Co concentrationx. Alternatively, theφ versusψ data
for all the compositions fall on auniversal straight line whose slope equals unity. In view
of equation (19), the observation thatφ ' ψ is a consequence of the fact thatHk � Hres .
This result implies that for any direction of the external static magnetic field in the sample
plane,Hres greatly exceeds both the demagnetizing field (which is negligibly small, about
100 Oe or less, in the IP configuration) as well asHk and hence the direction ofMS

coincides with that ofHres . On the other hand, in the OP case, the increase inθ is only
marginal (from 0◦ to about 5◦) in the interval 0◦ 6 α 6 45◦ but picks up abruptly for values



FMR of a-Fe90−xCoxZr II 4585

of α in the range 70–90◦ and the ‘knee’ in theθ versusα curves (figure 17) shifts tohigher
values ofα with increasing Co concentration. These features of theθ versusα curves can
be understood as follows. For anglesα ranging between 0◦ and 45◦, the magnetization
vectorMS is unable to keep pace with the alterations in the static magnetic field direction
because the angleθ betweenMS andHres as well as|Hres | are small and hence the torque
experienced byMS due toHres is not strong enough to counter the tendency of both shape
and uniaxial anisotropies to confineMS to the sample plane. As a consequence,θ possesses
small values in this range ofα. By contrast, whenα lies between 70◦ and 90◦, bothθ and
|Hres | attain large values (figure 13) and the torque exerted byHres on MS is now able to
work effectively against the dictates of the anisotropies in question (particularly the shape
anisotropy energy which assumes large values forα in the vicinity of 90◦) and cause a
sizable change in the direction ofMS with the result thatθ increases abruptly. In view of
this explanation, the displacement of the ‘knee’ to higher values ofα with increasing Co
concentrationx is a manifestation of the fact that both demagnetizing and uniaxial anisotropy
energies increase in magnitude asMS and Hk increase with increasingx. The values of
MS andHk, self-consistently calculated from equations (17)–(20) and plotted againstx in
figure 18, clearly demonstrate this trend. Moreover, close scrutiny of the data presented
in figures 10 and 18 reveals that excellent agreement exists between the sets of values for
MS(x) andHk(x) at T = 0.6TC obtained from the temperature and angular dependences of
Hres and that, in conformity with the observationHk(T ) ∝ MS(T ) (figure 9),Hk(x) scales
with MS(x) at T = 0.6TC (figure 18). While the present finding thatHres as a function of
the angleψ (α) goes through a maximum atψ = 90◦ (α = 90◦) and minima atψ = 0◦ and
180◦ (α = 0◦ and 180◦) asserts that the anisotropy is of a uniaxial nature, the observation
that Hk(x, T ) scales withMS(x, T ) strongly indicates that the uniaxial anisotropy in the
amorphous alloys investigated at present has its origin in the pseudo-dipolar atomic pair
ordering [25, 26], which develops during the rapid melt-quenching process.

Figure 17. Variation in the magnetization angleθ with α, the angle between the external static
magnetic field and the sample plane, in the OP configuration atT = 0.6TC .
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Figure 18. Dependences of (a) MS and (b) Hk on Co concentrationx.

While discussing the angular dependence of the FMR linewidth, two points need serious
consideration. First, as the frequency of the microwave field is held constant and the applied
static magnetic fieldHa is swept through resonance in the present experiments, corrections
have to be made for the fact thatM and Ha are not collinear, so that the change in the
applied field is not the same as the change in theeffectivefield He. Second, asHa changes,
the direction ofM changes, giving rise to an apparent line broadening which must also be
taken into account. Such corrections are small in the IP case since the angles in question
are small. However, in the OP case,M goes out of the sample plane, the demagnetizing
fields are large and corrections to the ‘raw’ linewidth data are necessary. The intrinsic, or
effective field, linewidth1He is related to the measured linewidth1Ha (≡ 1Hpp), as [28]

1He =
(

∂He

∂Ha

)
res

1Ha +
(

∂He

∂θ

)
res

1θ (21)

where the two partial derivatives, evaluated at resonance, i.e. atHe = ω/γ andHa = Hres ,
are obtained from equation (18). Note that equation (21) holds for the OP case and a
similar relation for the IP case is obtained by replacingθ in equation (21) byφ. In the
latter case, the partial derivatives are computed using equation (20). SinceHa and θ (φ)
are related through the equilibrium condition equation (17) (equation (19)), equation (21)
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and its counterpart for the IP case can be expressed as [29]

1He =
(

dHe

dHa

)
res

1Ha. (22)

In view of the equations (17)–(22), it is not surprising that the variations in1Hpp (≡ 1Ha)
with anglesψ andα are similar to those ofHres (cf figures 13 and 14).

4. Summary and conclusions

Elaborate analysis of the FMR data taken in the critical region on amorphous Fe90−xCoxZr10

(0 6 x 6 10) alloys and that of the observed temperature and angular dependences of the
resonance field for different compositions in this series permit us to draw the following
conclusions.

(i) An accurate determination of the critical exponentsβ and γ for the spontaneous
magnetization and initial susceptibility that characterize the FM–PM phase transition is
possible using the FMR technique.

(ii) Contrary to the earlier claim [3], the critical exponentsβ and γ are composition
independentand possess values that are close to the theoretical estimates [17] for an isotropic
short-range 3D Heisenberg ferromagnet. Alternatively, in accordance with the well known
Harris criterion, the quenched disorder does not change the critical behaviour of a 3D
ordered spin system whose specific heat critical exponent isnegative.

(iii) While the values of the amplitude ratiom0/MS(0) are consistent with the Harris
criterion, the ratioµ0h0/kBTC has values that arecomposition dependentand an order of
magnitude smaller than the 3D Heisenberg value of 1.58. The latter discrepancy between
experiment and theory is shown to imply that only a small fraction (about 11% for Fe90Zr10)
of spins is actually participating in the FM–PM phase transition and that this fractionc

increases with increasingx asc(x) − c(0) ' ax2.
(iv) In the critical region, the LLG relaxation is primarily responsible for the observed

FMR linewidth1Hpp. This is borne out by the observation that1Hpp(T ) ∝ [MS(T )]−1 in
the critical region.

(v) Consistent with the results obtained in a wide temperature range [15], which
embraces the critical region, the Landé splitting factorg has a temperature- and composition-
independent value of 2.07 ± 0.02 while the Gilbert damping parameterλ, although
temperature independent, decreases with increasing Co concentration.

(vi) The variations in the IP uniaxial anisotropy fieldHk = 2Ku/MS with temperature
and composition, deduced from the temperature dependence of the resonance field in
the horizontal-parallel and vertical-parallel sample configurations and from the angular
dependence of the resonance field observed in both IP and OP sample geometries,
respectively, atT = 0.6TC , demonstrate thatHk(x, t) scales with MS(x, T ). This
observation, in turn, strongly suggests that the uniaxial anisotropy originates from the
pseudo-dipolar atomic pair ordering which develops during the rapid melt-quenching
process.
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